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A B S T R A C T   

Investment risk and uncertainty about the availability of biomass feedstock hinders the development of a mature 
cellulosic biofuel sector. The Biomass Crop Assistance Program (BCAP) is a federal program designed to subsidize 
farmers to establish, produce and deliver biomass feedstock to biorefineries. This study evaluated the impacts of 
BCAP on the optimal biofuel supply chain decisions considering feedstock yield uncertainty and associated in
vestment risk given diverse risk preferences of the biofuel sector. The expected cost for a risk-neutral biofuel 
sector was minimized using a two-stage stochastic mixed integer linear program, whereas the Conditional Value- 
at-Risk of the supply chain was optimized for a risk-averse sector. Ex-ante analysis of a switchgrass-based biofuel 
sector in west Tennessee indicates BCAP payments could lower expected cost and investment risk for both risk- 
averse and risk-neutral biofuel sectors. However, the cost saving and risk reduction resulting from BCAP in
centives for the risk-averse biofuel sector were higher than the risk-neutral biofuel sector. In addition, BCAP 
payments may drive more cropland to be converted for switchgrass, which potentially mitigates water-induced 
soil erosion and reduces greenhouse gas emissions associated with net carbon sequestration, but may also create 
unintended consequence of competition for land between food and fuel use.   

1. Introduction 

Growing concerns over greenhouse gas (GHG) emissions from fossil 
fuel consumption have driven the formulation of government policies to 
promote the production and consumption of sustainable renewable en
ergy. Biofuel produced from lignocellulosic biomass (LCB) has been 
suggested as a socio-economically sustainable source of renewable en
ergy (Dale et al., 2011; Field et al., 2018). Perennial switchgrass is a 
promising LCB crop given its net negative life cycle GHG emissions as a 
biofuel feedstock compared to gasoline (Wright and Turhollow, 2010). 
In addition, switchgrass’ adaptability on less fertile lands could reduce 
land competition among food crops (Naik et al., 2010; Carriquiry et al., 
2011). 

There has been considerable research exploring the potential of 
producing biofuels derived from switchgrass on a commercial scale 
(Schmer et al., 2008; Wang et al., 2012; Field et al., 2018). However, the 
production of switchgrass-based biofuel remains moderate. One of the 
main challenges to developing an efficient switchgrass supply chain is 

the uncertainty associated with strategic and operational decisions of 
the biofuel industry. Variability in biomass production due to weather 
makes the assessment of strategic investment decisions complex. 
Morrow et al. (2014) simulated the impact of droughts using climate 
models and suggest that yield reduction from drought could bring eco
nomic disruption to many biorefineries planned in the United States 
(US). Thus, addressing feedstock supply uncertainty and associated risks 
is crucial in designing a switchgrass supply chain for large scale biofuel 
production. 

To mitigate the adverse impact of feedstock supply uncertainty on 
development of a biofuel industry, the United States Congress initiated 
the Biomass Crop Assistance Program (BCAP) in the Conservation and 
Energy Act of 2008 (US Department of Agriculture (USDA), 2015), and 
has reauthorized the program in the 2014 and 2018 Farm Bills. The 
BCAP provides three types of payments to producers of dedicated energy 
crops. First, feedstock establishment payments lower farmers’ cost of 
planting dedicated energy crops by 50 percent under the cap of $1236 
per hectare. Second, annual rental payments cover farmers’ land rental 
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up to five years. Finally, matching payments of up to $45 Mg− 1 of 
feedstock partially covers the cost of collecting, harvesting, storing and 
transporting biomass to a biorefinery for no more than two years. The 
three types of payments may lower farmers’ cost and risk of producing 
LCB crops, hence increasing feedstock supply and, ultimately, biofuel 
production. 

A number of studies have assessed the economics of the BCAP 
through stochastic modeling of crop-enterpise level feedstock yields, 
prices, and profit and the determination of mean break-even prices of 
biofuels (Dolginow et al., 2014; Skevas et al., 2016). These studies 
indicate that the BCAP positively impacted the risk and return profile for 
LCB crops. Another thread of the literature has evaluated farmers’ 
willingness to produce LCB crops given BCAP payments and found the 
incentives positively influenced farmers’ decisions to adopt dedicated 
energy crops (Fewell et al., 2016; Eaton et al., 2018; Jiang et al., 2018). 
Several studies have also analyzed the impacts of BCAP with other 
biofuel policies on the environmental and economic metrics of bio
mass/biofuel network design with the goal of helping policymakers to 
broaden the scope of biofuel incentive programs (Chen and Önal, 2016; 
Ghani et al., 2018). However, the impact of BCAP subsidies on the 
design of a stochastic biofuel supply chain considering feedstock yields 
variation and decision makers’ risk preference has not been evaluated. 

Uncertainty of feedstock supply has been one of the major issues to 
address while optimizing the economics of a stochastic biofuel supply 
chain in the literature. A key assumption made in most studies is that the 
LCB feedstock is available from markets when local production is scarce 
(Chen and Fan, 2012; Tay et al., 2013; Huang et al., 2014; Tong et al., 
2014; Fattahi and Govindan, 2018). However, large-scale markets for 
LCB feedstock do not presently exist so additional biomass for biofuel 
production cannot be easily located in years when there is a shortfall in 
production due to weather and other stochastic events. In addition, 
mature yields for perennial LCB crops do not occur until several years 
after feedstock establishment. Thus, land use choice for LCB production 
should be included in the strategic decision when addressing variation in 
the LCB yields. Except for Osmani and Zhang (2013), land selection for 
feedstock has been neglected in the previous studies of the stochastic 
biomass feedstock supply chain. 

Another assumption embedded in supply chain analyses is risk 
neutral preferences of decision makers in the biofuel sector. However, 
the development of a commercial-sized switchgrass supply chain may be 
impeded by risk-aversion behavior of decision makers concerned about 
feedstock supply uncertainty. Financial risks associated with the oper
ational level decisions in biofuel supply chain optimization have been 
addressed in several studies (Kostin et al., 2012; Giarola et al., 2013; 
Kazemzadeh and Hu, 2013; Sawik, 2013). However, production risk 
related to uncertainty of feedstock supply and associated land use at the 
strategic level for risk-averse decision makers trading off risk and return is 
still lacking in the literature. 

Thus, the objectives of the present study are three-folded. First, we 
determined the impacts of BCAP on expected costs and the risk profile of 
a switchgrass-based supply chain in the presence of feedstock yield 
uncertainty. Presumably, BCAP subsidies should improve the risk profile 
of the supply chain. Second, we assessed the influence of land selection 
in the strategic decision stage on the cost and risk profile of the supply 
chain, which was typically omitted in stochastic biofuel supply chain 
studies. In contrast to previous studies that assumed additional feed
stock available from markets to handle feedstock supply uncertainty, the 
present study included land use choice, along with biorefinery facility 
location, in the investment decisions to better capture feedstock yield 
uncertainty. Finally, our study aimed to provide a more comprehensive 
assessment of the biofuel sector’s decisions in response to the incentives 
by including both risk-neutral and risk-averse decision makers in our 
analysis of BCAP. 

2. Analytical methods 

To address our study objectives, a two-stage stochastic program was 
employed to minimize expected cost for risk-neutral decision makers. 
The corresponding risk metrics, Value-at-Risk (VaR) and Conditional 
Value-at-Risk (CVaR), were then calculated after optimization. Simi
larly, we minimized CVaR (and VaR simultaneously) for risk-averse 
decision makers of the biofuel sector using the stochastic model and 
calculated its associated expected cost. Selection of biorefineries loca
tion and capacity along with the amount of land required for switchgrass 
cultivation were the first-stage decisions. All of the first-stage (strategic) 
and second-stage (operational) decisions were driven by biofuel demand 
constrained by yield uncertainty. BCAP subsidies were introduced in 
both cases to illustrate the changes in cost and risk for both types of 
decision makers. 

2.1. Expected cost minimization model (model 1: risk-neutral decision 
makers) 

Minimizing the cost of a biofuel supply network system under yield 
uncertainty results in a two-stage program that optimizes the sum of the 
first-stage investment costs and the expected cost of the stochastic op
erations in the second-stage (Ahmed, 2010). It is a recourse model that 
requires decision makers to make the investment decision prior to op
erations and then minimize the expected cost of the resulting outcomes 
associated with the decision. To better capture the impact of stochastic 
switchgrass yields on the investment decision, our augmented two-stage 
stochastic mixed integer linear program (MILP) incorporated land use 
choice and feedstock establishment activities under the investment de
cisions in the first-stage. The cost associated with feedstock shortage in 
fulfilling the final demand was included since alternative feedstock 
availability was not considered. Similarly, feedstock production surplus, 
if any, was managed as an inventory with a storage cost. 

Eq. (1) represents the objective function of the expected cost mini
mization model (referred as model 1 hereafter). 

Minimize : E(Cost)=Cost1st− stage + E
(
Cost2nd− stage

)
(1)  

where all the identifiers, parameters and variables used in the stochastic 
model are defined in Table 1. Eq. (2) presents the investment related 
costs which includes annualized investment cost of biorefineries (Cfac

inv) 
and annualized establishment cost of switchgrass (Cswi

est ). Similarly, op
portunity cost of switchgrass (Cswi

opp) and maintenance cost of switchgrass 
(Cswi

mnt) are included in the first-stage as they were proportional to 
established switchgrass area (hectares). Computation of these invest
ment cost components is expressed in Eqns. (3)–(6). 

Cost1st− stage = Cfac
inv + Cswi

est + Cswi
opp + Cswi

mnt (2)  

Cfac
inv =

∑

j∈J

∑

g∈G

(
μg × zjg

)
(3)  

Cswi
est =

∑

i∈I

∑

h∈H
(α×Xih) (4)  

Cswi
opp =

∑

i∈I

∑

h∈H
(βih ×Xih) (5)  

Cswi
mnt =

∑

i∈I

∑

h∈H
(AM ×Xih) (6)  

where 

βih =

{
Pih × Yih − Cih if (Pih × Yih − Cih) ≥ Rih
Rih if (Pih × Yih − Cih) < Rih

}

The establishment cost (α) is a one-time upfront cost that included 
the cost of seed, labor, and equipment for planting perennial switchgrass 
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and was based on Larson et al. (2010). The establishment cost was 
amortized over the 10-year lifespan of switchgrass and did not vary by 
land type. Following Yu et al. (2014), opportunity cost (βih) was defined 
as either the net returns from current land use or land rent, whichever 
was higher. Opportunity costs on a land unit basis (hectares) varied 
spatially in the model based on land use (pasture or crop) and the prior 
cropping activity (e.g., corn, soybean, wheat, etc.). Establishment cost, 
opportunity cost, and maintenance cost were related to the area of land 
converted to switchgrass and unrelated to feedstock yield. 

Eq. (7) sums up the expected cost of all operations in the supply chain 
that were subject to yield uncertainty, including switchgrass harvest 
(Cswi

hrv), switchgrass storage (Cswi
stg ), switchgrass transportation (Cswi

trans), 

biofuel conversion (Cbio
conv), biofuel transportation (Cbio

tran), and biofuel 
shortage (Cbio

short) costs.2 These expected costs are calculated in Eqns. (8)– 
(13). 

E
(
Cost2nd− stage

)
=E

(
Cswi

hrv

)
+E

(
Cswi

stg

)
+E

(
Cswi

trans

)
+E

(
Cbio

conv

)
+E

(
Cbio

trans

)

+ E
(
Cbio

short

)

(7)  

E
(
Cswi

hrv

)
=
∑

i∈I

∑

h∈H

∑

s∈S
Yixs × Xih × ω × prob (s) (8)  

E
(

Cswi
stg

)
=
∑

i∈I

∑

s∈S
XSis × γ × prob (s) (9)  

E
(
Cswi

tran

)
=
∑

m∈M

∑

i∈I

∑

s∈S
XQmis × θ × prob (s) (10)  

E
(
Cbio

conv

)
=
∑

m∈M

∑

j∈J

∑

b∈B

∑

s∈S
XOmjbs × ρ × prob (s) (11)  

E
(
Cbio

tran

)
=
∑

m∈M

∑

j∈J

∑

b∈B

∑

s∈S
XOmjbs × δ × prob (s) (12)  

E
(
Cbio

short

)
=
∑

m∈M

∑

s∈S
Shortagems × Ω × prob (s) (13) 

Eqns. (14)–(22) define the constraints imposed on the cost minimi
zation problem to connect the decisions in the first stage and second 
stage. Eq. (14) limits switchgrass production in each spatial unit to 
available agricultural land. Eq. (15) restricts total biomass available at 
each site to total biomass production at the given site. Eqns. (16)–(19) 
are mass balance/flow constraints. Harvested switchgrass is either 
directly transported to the biorefinery during harvest or stored for future 
delivery (Eq. (16)). Eq. (17) sets the cumulative switchgrass delivered to 
the facility plus the surplus feedstock at the end of the off-harvest period 
equal to the total biomass stored during the harvest season. Eq. (18) 
ensures that everything delivered to the biorefinery during each season 
is converted into ethanol. Eq. (19) guarantees any feedstock shortage 
plus bioethanol sent to a blending facility meets demand at the facility 
for each season. Eq. (20) allows at most one biorefinery at each site. Eq. 
(21) denotes the domain of the binary decision variables. Non-negativity 
constraints imposed on the continuous decision variables are listed in 
Eq. (22). 

Xih ≤ Aih ∀ i, h (14)  

∑

h∈H
Yixs ×Xih = XNSis + XSis ∀ i, s (15)  

XNSis =
∑

m∈Mon

∑

j∈J

XQmijs

(1 − DT)
∀ i, s (16)  

XSis =
∑

m∈Moff

∑

j∈J

XQmijs

(1 − DS) × (1 − DT)
+

Surplusis

(1 − DS)
∀ i, s (17)  

σ
∑

i∈I

∑

j∈J
XQmijs =

∑

j∈J

∑

b∈B
XOmjbs ∀ m, s (18)  

∑

j∈J

∑

b∈B
XOmjbs + Shortagems = Dm ∀ m, s (19)  

∑

g∈G
zjg ≤ 1 ∀ j (20) 

Table 1 
Definitions of identifiers, parameters and variables.  

Category Unit Definition 

Identifiers 
i ε I  location of switchgrass production field 
j ε J  location of the biorefinery facility 
b ε B  location of the blending facility 
g ε G  annual capacity of conversion facility 
m ε M  season of the year 
Mon ε M  harvest season of the year 
Moff ε M  off-harvest season of the year 
h ε H  crop (pasture, corn, soybean, wheat, sorghum, cotton) 
s ε S  uncertainty scenario for switchgrass yield 
x  switchgrass 

Parameters 

Pih $/Mg price of crop h at field i 
Yih Mg/ha yield of crop h at field i 
Cih $/ha production cost of crop h at filed i 
Yixs Mg/ha yield of switchgrass under scenario s at file i 
Rih $/ha land rent of crop h at field i 
α  $/ha amortized establishment cost of switchgrass field 
βih  $/ha opportunity cost of switchgrass to replace crop h at field i 
AM $/ha annual maintenance cost of switchgrass field 
μg  $/plant amortized investment cost of conversion facility g 
ω  $/Mg per unit harvest cost for switchgrass 
γ  $/Mg cost per unit of storing switchgrass 
Θ $/Mg cost per unit of transporting switchgrass 
ρ  $/L biorefinery operation cost 
δ  $/L biofuel transportation cost 
DT % dry matter loss during transportation 
Aih Ha available cropland for crop h at field i 
DS % dry matter loss during storage 
σ  L/Mg switchgrass-ethanol conversion rate 
Δmjg  L/ 

season 
biofuel production capacity g of biorefinery j in season m 

Dm L/ 
season 

demand for ethanol in season m 

Ω $/L penalty on biofuel shortage 
Prob(s)  probability associated with scenario s 

Variables 

zjg  1 for selecting biorefinery capacity g at field j, 0 otherwise 
Xih Ha switchgrass area harvested from cropland h in the harvest 

season at field i 
XNSis Mg switchgrass not stored at field i after harvest under scenario 

s 
XSis Mg switchgrass stored at field i after harvest under scenario s 
XOmijs Mg switchgrass delivered from field i to biorefinery j in season 

m 
Surplusis Mg Switchgrass surplus after meeting demand under scenario s 

at field i 
Shortagems L demand shortage of biofuel in season m under scenario s 
XOmjbs L fuel delivered from biorefinery j to blending facility b 

under scenario s in season m  

2 A penalty of $1.32/L was applied to the biofuel shortage assuming that the 
penalty was 50 percent higher than the conventional gasoline price. 

B.P. Sharma et al.                                                                                                                                                                                                                              



Energy Policy 146 (2020) 111737

4

zjg ∈ {0, 1} ∀ j, g (21)  

X,XNS,XS,XQ,XO, Surplus, Shortage ≥ 0 (22)  

2.2. CVaR minimization model (model 2: risk-averse decision makers) 

Feedstock supply is a main source of uncertainty in the biofuel supply 
chain driven by the fluctuations in the yield, which is dependent on 
weather and other stochastic events. Consequently, the system may not 
be able to meet the demand, or there might be excess production 
resulting in inventory accumulation. The associated risk could be 
quantified using standard stochastic procedures in the optimization of 
economic metrics. 

VaR and CVaR are commonly used to penalize for risk in stochastic 
supply chain optimization. Within a given confidence interval ϑ, VaRϑ of 
a random variable is defined as the lowest value t such that with prob
ability ϑ the loss will not be greater than t (Rockafellar and Uryasev, 
2000). Similarly, CVaRϑ is the conditional expectation of the loss above 
the value t. In this study, the random variable was replaced by integrated 
cost (Cost), and VaRϑ was the minimum value t such that the cost was 
less than or equal to t with probability ϑ. CVaRϑ was the conditional 
expectation of the integrated cost above the value t. For a discrete dis
tribution of the costs under different yield scenarios, CVaR is more 
generally defined as the weighted average of the VaR and the costs 
strictly exceeding VaR (Krokhmal et al., 2002). This can be expressed as: 

CVaRϑ(Cost, ϑ)=
∑

s∈S∅(s) × prob(s)
1 − ϑ

+ VaRϑ(Cost)

where 

VaRϑ(Cost)= Infimum{t : Probability(Cost≤ t) ≥ϑ}

∅(s)≥Cost(s) − VaRϑ(Cost), ∅ (s)≥ 0, VaRϑ(Cost) ≥ 0 

The non-negativity constraint of ∅(s) makes sure it is set to zero if 
Cost(s) was below VaRϑ(Cost) while computing CVaRϑ(Cost,ϑ). Certain 
undesirable mathematical properties make VaR a non-coherent measure 
of risk (Artzner et al., 1999; Rockafellar and Uryasev, 2000). In addition, 
VaR is often criticized for offering no information on the risks above the 
defined percentile (Kidd, 2012). Thus, CVaR was minimized with the 
defined ϑ in this study using the stochastic model developed in Section 
2.1 (Eq. (23)) (referred as model 2 hereafter): 

Minimize : CVaRϑ(Cost,ϑ)=
∑

s∈S∅(s) × prob(s)
1 − ϑ

+ VaRϑ(Cost) (23) 

Subject to 

∅(s)≥Cost(s) − VaRϑ(Cost), ∅ (s)≥ 0, VaRϑ(Cost) ≥ 0 (24)  

Eqns.(14) − (22) (25) 

The CVaR(Cost) minimization was implemented with ϑ equal to 95 
percent where VaR(Cost) represented the value corresponding to the 
95th percentile of the cost distribution. VaR(Cost) was simultaneously 
determined while the weighted average of the cost at the 95th percentile 
and the expectation of the costs exceeding the 95th was minimized in the 
model. The CVaR minimization model is referred as model 2 hereafter in 
the study. General Algebraic Modeling System (GAMS) was used to solve 
the two-stage stochastic MILP for the two different objectives (Rosen
thal, 2008). 

2.3. Estimating impact of BCAP subsidies 

We introduced a subsidy that lowered amortized establishment costs 
by 50 percent. We also amortized 5 years of annual payments corre
sponding to land rents as offered in the BCAP.3 Stochastic optimization 
outputs with and without BCAP were compared to see the effect of in
centives on optimal land allocation and biorefinery configuration. The 
annualized 10 year switchgrass establishment payment was applied to 
the establishment cost (α) in Eq. (4) in section 2.1 through lowering α by 
50 percent. Similarly, the amortized five-year annual rental payment 
was applied to the opportunity cost term (βih) in Eq. (5) as the annual 
rental payment was based on the land type (i.e. crop or pasture) con
verted to switchgrass. 

3. Data 

One novel feature of this study was the use of experimental data 
collected from field trials in west Tennessee for generating probabilistic 
yield scenarios rather than assuming a random uniform distribution of 
feedstock yield as was typically adopted in previous studies. Matured 
yield of switchgrass from field trials with fertilizer application rate of 67 
kg N per hectare between 2006 and 2011 in west Tennessee (Boyer et al., 
2012, 2013) was used to generate stochastic yields. Equally spaced yield 
intervals were created, and each interval was assumed a scenario with 
probability obtained from the frequency distribution of yield from the 
field trials data. Taking each interval’s mean and standard deviation 
together with the truncation limits, yields were simulated assuming 
normally distributed yields to match the number of spatial units under 
each scenario. 

A total of 15 different yield scenarios were used to optimization for 
each of the two-stage stochastic models (Fig. 1). A higher number of 
yield scenarios (sample size) allows more flexibility in choosing the risk- 
aversion parameter (ϑ -percentile) and improves reliability of the CVaR 
estimate as CVaR is more sensitive to estimation errors than the corre
sponding VaR (Yamai and Yoshiba, 2005). Spatial yield variation under 
each yield scenario was mapped based on simulated spatial variation in 
switchgrass yields across the US. (Jager et al., 2010). The study area was 
downscaled to 12.95 square km (5 square mile) land spatial units to 
capture spatial variation in stochastic switchgrass yields. 

Potential sites for biorefinery and switchgrass establishment are 
shown in Fig. 2. A total of 18 industrial parks were identified as candi
dates for establishing biorefineries. Each spatial unit can locate a bio
refinery with either 189 million liters per year (MLY) or 378 MLY 
capacity. Similarly, a total of 1936 spatial units (existing agricultural 
lands) were eligible for switchgrass cultivation replacing current crops. 
An annual demand of 1.1 billion liters (L) of ethanol for west Tennessee 
was assumed based on the estimate in Yu et al. (2016). A 
biomass-to-ethanol conversion efficiency of 304 L/Mg for switchgrass 
was used in the analysis. The sources of cost related data for 
switchgrass-based ethanol production in west Tennessee are summa
rized in Table 2. 

4. Results and discussion 

4.1. Risk-neutral biofuel sector (model 1) without and with BCAP 
subsidies 

Without BCAP subsidies, the optimal supply chain cost, E(Cost), was 
$1125 million,4 while the corresponding VaR(Cost) and CVaR(Cost) risk 
penalties calculated using Eq. (23) were $1360 million and $1441 
million, respectively. The annualized cost components of all investment 

3 Switchgrass is not eligible for the matching payment in the BCAP (USDA, 
2015).  

4 All the monetary values are stated in 2015 US dollars. 

B.P. Sharma et al.                                                                                                                                                                                                                              



Energy Policy 146 (2020) 111737

5

(strategic) and operational level decisions in model 1 for the optimal E 
(Cost) are summarized in Table 3. About 60 percent of total supply chain 
cost was associated with biorefinery operations. For the three bio
refineries in the supply chain (each with 378 MLY capacity), expected 
operational cost for biofuel conversion was about $350 million and 
annualized investment cost was $326 million. Feedstock harvest costs 

and the biofuel shortage penalty were the next most costly items within 
the supply chain. The expected cost of switchgrass transportation to the 
biorefineries was more than double the expected cost of biofuel trans
portation to the fuel-blending depot. Annualized feedstock establish
ment and maintenance costs were proportional to total land converted 
to switchgrass production. Opportunity cost was dictated by the type of 

Fig. 1. Switchgrass yield scenario distribution. 
Note: S1 through S15 denote stochastic yield scenarios. 

Fig. 2. Potential biorefinery locations and switchgrass yields in each spatial unit. 
Note: The range of yield refers to the S8 yield scenario (19.37–21.84 Mg/ha) defined in Fig. 1. 
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land on which switchgrass was planted (pastureland or cropland). 
With BCAP subsidies, the overall optimal cost, E(Cost), of the supply 

chain was reduced by 4.1 percent to $1081 million. The corresponding 
CVaR(Cost) risk measure was marginally reduced from the no BCAP 
scenario and totaled $1399 million. Optimal land allocations for 
switchgrass establishment and the locations of biorefineries in model 1 
for the two BCAP scenarios are shown in Fig. 3. Considerable spatial 
variation in switchgrass yields was observed across the 1936 land spatial 
units and the variation influenced the selected location for biorefineries. 
The model located biorefineries near higher yielding croplands to 
reduce transportation costs of bulky switchgrass but traded off lower 
switchgrass transportation costs with increased biofuel transportation 
costs to the blending facility. The interactions among lower land op
portunity costs, higher yields, and shorter travel distances with cropland 
near potential conversion facility sites contributed to the placement of 
the supply chain given BCAP incentives. 

About 14 thousand hectares of cropland and 265 thousand hectares 
of pastureland were converted to switchgrass. Biorefinery locations and 
land use choice in the strategic level decisions changed with the BCAP 
incentives (Fig. 3). The more compact feedstock draw areas in the BCAP 
scenario are influenced by the BCAP subsidies in several different ways 
in the model. The BCAP land rental subsidies on higher cost cropland 
lowered the opportunity cost of cropland relative to pastureland. Lower 
cropland opportunity costs, higher yields per hectare over which to 
spread first-stage (establishment, opportunity, and maintenance) costs, 
and shorter field to biorefinery travel distances (with lower trans
portation costs) contributed to more cropland near potential biorefinery 
sites coming into the solution. Thus, cropland planted with switchgrass 
increased to 73 thousand hectares with BCAP land rental payments, 
whereas pastureland/hayland converted to switchgrass decreased to 
205 thousand hectares. This suggests that BCAP incentives may have 
had the unintended effect of displacing food and fiber production from 
cropland in the design of the supply chain. However, converting crop
land to perennial grasses such as switchgrass also has the potential to 
reduce water-induced soil erosion that is a pervasive problem on crop
land in West Tennessee (Zhong et al., 2016). Our results suggest that 
targeting BCAP subsidies towards more erodible cropland may align the 
program with the long-term US agricultural policy goal to reduce soil 
erosion (McGranahan et al., 2013). 

Table 2 
Data source.  

Category Source 

Land conversion to switchgrass 
Land rents USDA NASS (U.S. Department of Agriculture, 

2013–2015a) 
Crop yields USDA, SSURGO (U.S. Department of Agriculture 

Nature Resources Conservation Service, 2012) 
Crop price and area USDA NASS (U.S. Department of Agriculture, 

2013–2015b) 
Crop production cost POLYSIS (Ugarte and Ray, 2000), USDA ERS (U.S. 

Department of Agriculture, 2015) 
Switchgrass yield Jager et al. (2010), Boyer et al. (2012), Boyer et al. 

(2013) 
Switchgrass production and 

harvest cost 
Larson et al. (2010), University of Tennessee (2015) 

Production 
Establishment American Agricultural Economics Association (2000) 
Annual maintenance American Society of Agricultural and Biological 

Engineers (2006) 
Harvest 
Fuel and labor University of Tennessee (2015) 
Storage 
Covers and pallets University of Tennessee (2015) 
Transport 
Trailer, fuel and labor University of Tennessee (2015)  

Table 3 
Annualized cost (million $) components in model 1 without BCAP subsidies.  

Operation component Cost Operation component Cost 

Biorefinery investment cost 326 E(Grinding cost) 49 
Feedstock establishment cost 49 E(Biomass transportation cost) 62 
Opportunity cost 20 E(Biofuel transportation cost) 25 
Maintenance cost 36 E(Biorefinery operation cost) 350 
E(Harvest cost) 101 E(Shortage penalty cost) 85 
E(Storage cost) 22   

Note: Model 1 represents the risk-neutral biofuel sector’s decision of E(Cost) 
minimization. All numbers are in 2015 US million dollars. E is the expectation 
operator. 

Fig. 3. Optimal investment decisions in model 1 with and without BCAP subsidies. 
Note: Model 1 represents the risk-neutral biofuel sector’s decision of E(Cost) minimization. E is the expectation operator. 
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Sizeable changes in the costs of certain supply chain activities were 
observed under the BCAP (Table 4). Expected switchgrass transportation 
cost dropped by $6 million, whereas expected biofuel transportation 
cost slightly increased from the no BCAP scenario. Expected biofuel 
transportation cost decreased because one of the biorefineries was 
located nearer the blending facility serving West Tennessee. Gross5 op
portunity cost of land use increased by about $12 million with BCAP 
subsidies because more cropland near biorefineries was selected for 
switchgrass production. However, the net opportunity cost of cropland 
was reduced by nearly $11 million given the BCAP land rent payment 
making the unit cost of switchgrass ($ Mg− 1) on some cropland to be less 
than pastureland. By comparison, the net feedstock establishment cost 
was reduced by 50 percent with the BCAP establishment payment but 
the payment did not influence land use in the same way as the BCAP land 
rental payments. 

4.2. Risk-averse biofuel sector (model 2) without and with BCAP 
subsidies 

Stochastic optimization considering switchgrass yield risk using 
CVaR(cost) minimization (model 2) resulted in the anticipated tradeoff 
of higher expected supply chain costs with lower risk penalties when 
compared to the risk-neutral case (model 1). In the absence of the BCAP, 
the optimal CVaR(cost) risk penalty of $1358 million was lower than the 
$1441 million risk penalty incurred for the risk-neutral case, but the 
corresponding E(Cost) calculated using Eq. (1) was higher at $1249 
million. Imposing a penalty for switchgrass yield risk on the design of 
the supply chain resulted in substantially different land use when 
compared to the risk neutral case (see Figs. 3 and 4). Nearly one-third 
more land was converted to switchgrass production with the CVaR 
(cost) risk penalty model and established 367 thousand total hectares 
compared to 279 total hectares for the risk neutral model. In addition, 
more cropland was converted to switchgrass when penalizing yield risk. 
Switchgrass established on cropland comprised 12 percent (43 thousand 
hectares) of supply chain area for the CVaR(cost) risk penalty minimi
zation model but made up only 5 percent (14 thousand hectares) of 
supply chain area with the expected cost minimization model. The CVaR 
(cost) model diversified production risk by distributing the larger area 
converted to switchgrass over a wider geographical footprint and 
included more cropland with higher yield potential in the supply chain 
(Fig. 4). 

Penalizing for yield risk in the model substantially increased the 
costs of feedstock procurement in Table 5 because of more land area 
converted to switchgrass. Costs related to the opportunity cost of land 
and establishment, maintenance, harvest, and storage of feedstock 

jumped 35 percent between the E(cost) minimization model and the 
CVaR(cost) minimization solution (see Tables 3 and 5). Biorefinery 
operation costs dropped from $350 million in the risk-neutral model to 
$332 million in the risk penalty model. However, the biofuel shortage 
penalty rose from $85 million in the risk neutral model to $153 million 
(764 MLY) in the risk penalty model. The CVaR(cost) model minimized 
risk through a combination of increasing the amount of switchgrass 
production and storage to reduce feedstock shortfalls, reducing oper
ating cost by producing less biofuel at the three biorefineries, and pur
chasing biofuel elsewhere to make up for the shortfall in meeting the 
demand for biofuel. 

With the BCAP, the expected CVaR(Cost) risk penalty is $1299 
million, lower than the $1358 million value without BCAP. The corre
sponding E(Cost) was also lower than the no BCAP scenario at $1181 
million. Optimal land allocation for switchgrass and biorefinery loca
tions for both BCAP scenarios are in Fig. 4. With the BCAP incentives, 
penalizing for yield risk resulted in supply area in switchgrass of 360 
thousand hectares that was similar to the 367 thousand hectares con
verted without the BCAP. Imposing a risk penalty on the design of supply 
chain substantially altered the composition of land types converted to 
switchgrass. Switchgrass established on cropland made up 40 percent 
(152 thousand hectares) of total supply chain area compared to only 12 
percent (43 thousand hectares) without the BCAP. The supply chain 
shifted to the northeast, away from the blending facility. Given the 
reduction in net opportunity costs with the BCAP rental payments, the 
risk penalty model sought out higher yielding croplands over a wider 
geographical space to diversify yield risk in the feedstock supply chain. 

Table 6 shows changes in the various cost components of the risk- 
averse biofuel sector for the two BCAP scenarios. The expected biofuel 
shortage cost dropped by nearly $38 million through a more stable 
supply of switchgrass with the BCAP subsidies. Expected biorefinery 
operation cost increased by 10 million, primarily driven by a subsequent 
increase in expected biofuel transportation cost when BCAP was in 
place. Gross opportunity cost of land use increased by nearly $27 million 
with BCAP subsidies due to the selection of high yield croplands. The 
annual rent payment and feedstock establishment payment of BCAP 
contributed to the net opportunity cost and net feedstock establishment 
cost, respectively. 

4.3. Comparing the impacts of BCAP on the risk-neutral and risk-averse 
biofuel sectors 

Fig. 5 shows BCAP subsidies lowered E(Cost) by 3.86 percent for the 
risk-neutral biofuel sector (model 1) and 5.41 percent for the risk-averse 
biofuel sector (model 2). Similarly, the respective CVaR(Cost) risk 
penalties associated with models 1 and 2 were reduced by 2.89 and 4.36 
percent with the BCAP. Model 2 minimized the high costs associated 
with lower yield scenarios, which led to use of more land for switchgrass 
cultivation. Additional land use in model 2 ensured more establishment 
and annual land rent payments for the biofuel sector under BCAP. Thus, 
the percentages of cost savings and risk reduction for the risk-averse 
biofuel sector were higher than the risk-neutral sector (Fig. 5). 

The expected costs of supplying biomass to the biorefinery were $80 
Mg− 1 and $102 Mg− 1 for the risk-neutral and risk-averse biofuel sectors, 
respectively, which were further reduced to $68 Mg− 1 and $89 Mg− 1, 
respectively, if BCAP subsidies were available when designing the sup
ply chain. From the perspective of biofuel, the expected costs of biofuel 
delivery to the blending facility were $1.02/L and $1.13/L for the risk- 
neutral and risk-averse biofuel sectors, respectively. With BCAP sub
sidies, the expected biofuel delivery costs reduced to $0.98 L-1 and 
$1.07 L-1 for the risk-neutral and risk-averse biofuel sectors, 
respectively. 

5. Conclusions and policy implications 

Considering the investment risk associated with converting 

Table 4 
Deviation in annualized costs (million $) component in model 1 with and 
without BCAP subsidies.  

Annualized cost component Without BCAP With BCAP 

Gross feedstock establishment cost 49 48 
Net feedstock establishment cost 49 24 
Gross opportunity cost 20 32 
Net opportunity cost 20 9 
E(Biomass transportation cost) 62 56 
E(Biofuel transportation cost) 25 24 

Note: Gross opportunity and gross feedstock establishment costs refer to the 
costs of establishment and opportunity costs had not been subsidized with 
annual establishment and land rent payments, respectively, from BCAP. Model 1 
represents the risk-neutral biofuel sector’s decision of E(Cost) minimization. E is 
the expectation operator. 

5 Gross refers to the land opportunity cost before the annualized land rent 
payment from BCAP was applied. 
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established cropland or pastureland to dedicated energy crops for 
cellulosic biofuel production, this study assessed the impacts of a federal 
incentive program, BCAP, on the investment decisions (including land 
use choice) of a biofuel sector under feedstock supply uncertainty. The 
optimal design of the biofuel supply chain of both risk-neutral and risk- 
averse decision makers were analyzed using an augmented two-stage 
stochastic MILP that incorporated land use along with biorefinery con
figurations in the strategic decision. 

Ex-ante analysis of a switchgrass-based biofuel sector in west Ten
nessee using the augmented stochastic model suggests that the optimal 
supply chain of the risk-averse biofuel sector utilized more land for 
switchgrass cultivation compared to the land use decisions of the risk- 
neutral biofuel sector as the former aimed to reduce the high costs 
associated with feedstock scarcity from the low yield scenarios. 
Providing BCAP subsidies improved both economics and risk of the 
biofuel sector; however, the risk-averse decision makers were more 
responsive to BCAP subsidies in the strategic decisions for land use 
choice compared to the risk-neutral sector. The demand to reduce po
tential biofuel shortage for the risk-averse biofuel sector pushed decision 
makers to adopt the higher yield cropland with higher opportunity costs 
that were effectively compensated by BCAP land rent payments. As a 
result, both the expected cost and CVaR of the supply chain were 
reduced at a higher percent for the risk-averse biofuel sector compared 
to the risk-neutral sector with BCAP subsidies. The improved economic 
condition of the biofuel sector in our study was consistent with previous 

Fig. 4. Optimal investment decisions in model 2 with and without BCAP subsidies. 
Note: Model 2 represents the risk-averse biofuel sector’s decision of CVaR(Cost) minimization. 

Table 5 
Annualized cost (million $) components in model 2 without BCAP subsidies.  

Operation component Cost Operation component Cost 

Biorefinery investment cost 326 E(Grinding cost) 47 
Feedstock establishment cost 64 E(Biomass transportation cost) 61 
Opportunity cost 31 E(Biofuel transportation cost) 23 
Maintenance cost 47 E(Biorefinery operation cost) 332 
E(Harvest cost) 133 E(Shortage penalty cost) 153 
E(Storage cost) 32   

Note: Model 2 represents the risk-neutral biofuel sector’s decision of E(Cost) 
minimization. All numbers are in 2015 US million dollars. E is the expectation 
operator. 

Table 6 
Deviation in annualized cost (million $) components in model 2 with and 
without BCAP subsidies.  

Annualized variables Without BCAP With BCAP 

Gross feedstock establishment cost 64 63 
Net feedstock establishment cost 64 31 
Gross opportunity cost 31 58 
Net opportunity cost 31 16 
E(Biorefinery operation cost) 332 342 
E(Biofuel transportation cost) 23 30 
E(Shortage penalty cost) 153 115 

Note: Gross opportunity and feedstock establishment costs refers to the costs if 
establishment and opportunity costs had not been subsidized with annual 
establishment and land rent payments, respectively, from BCAP. Model 2 rep
resents the risk-averse biofuel sector’s decision of CVaR(Cost) minimization. E is 
the expectation operator. 

Fig. 5. Percent change in economic and risk metrics in models 1 and 2 given 
BCAP subsidies. 
Note: Model 1 represents the risk-neutral biofuel sector’s decision of E(Cost) 
minimization, while model 2 represents the risk-averse biofuel sector’s decision 
of CVaR(Cost) minimization. E is the expectation operator. 
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studies that found increased profits for perennial bioenergy crops with 
BCAP payments (Dolginow et al., 2014; Skevas et al., 2016). 

Our findings also suggest that conversion of cropland to bioenergy 
crop production could be amplified given BCAP subsidies. The finding of 
the unintended consequence of BCAP subsidies on cropland use is in line 
with Wolde et al. (2017) that also indicated matching payment under 
BCAP leads to an adverse impact on land competition and biomass price. 
However, replacing cropland with switchgrass can potentially mitigate 
water-induced soil erosion, a prevalent problem on cropland in West 
Tennessee (Zhong et al., 2016), and reduce GHG emissions associated 
with net carbon sequestration (Yu et al., 2016). The diverse potential 
outcomes from BCAP subsides highlights the complexity of developing a 
balanced incentive program for both U.S. agricultural and bioenergy 
sectors. Our study suggests that targeting BCAP subsidies towards the 
area with more erodible cropland could be one tactic to mitigate those 
conflicting outcomes. Moreover, our findings illustrate that the decision 
makers’ preference and regional characteristics, such as land resource, 
can potentially affect the effectiveness of a government program. Thus, 
incorporating those factors in the design of an incentive program pre
sumably better addresses multiple policy targets. 

Our study has the limitation of being a regional case study analysis 
and does not evaluate the full impact of land use change resulting from 
BCAP. However, the ex-ante case study reported in this study offers 
important insights into the potential influence of BCAP incentives on 
supply chain design given uncertain feedstock yields and decision 
makers’ risk preferences. Our findings provide useful information that 
could be incorporated into a more comprehensive policy analysis using a 
national model. Therefore, future work could expand the scope to a 
national scale using less aggregated spatial data than in the present 
study to evaluate the full impact of land use so that the costs and benefits 
to society from BCAP incentives can be properly assessed to support 
policy development. 
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